

Climate-Smart Agriculture and AI: Bridging Environmental Science, Data Analytics, and Rural Development

Yogesh H. Bhosale

Professor, Computer Science and Engineering, CSMSS Chh. Shahu College of Engineering

Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India

Email id - yogeshbhosale988@gmail.com

KANDUKURI SESHAGIRI RAO

ASSISTANT PROFESSOR, COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY ENGINEERING COLLEGE FOR WOMEN, Hyderabad, TG, India

kseshu545@gmail.com

N S Nithya

Assistant Professor, MBA, Dr NGP Institute of technology, Coimbatore, Tamil Nadu, India

nsnithya1997@gmail.com

Andrea Elizabeth Morales Sela

PhD Student, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco,

28040 Madrid, Spain

andrea.ms1311@gmail.com

Dr.R.D.Sathiya

Professor, Department of CSE, KLEF Deemed to be University, Guntur, AP, India

sathiyard@kluniversity.in

Dr. Lowlesh Nandkishor Yadav

Associate Professor, Computer Science and Engineering,

Suryodaya College of Engineering and Technology, Nagpur, Maharashtra, India

lowlesh.yadav@gmail.com

To Cite this Article

Yogesh H. Bhosale, KANDUKURI SESHAGIRI RAO, N S Nithya, Andrea Elizabeth Morales Sela, Dr.R.D.Sathiya, Dr. Lowlesh Nandkishor Yadav. **“Climate-Smart Agriculture and AI: Bridging Environmental Science, Data Analytics, and Rural Development”** *Musik In Bayern, Vol. 90, Issue 11, Nov 2025, pp 59-70*

Article Info

Received: 25-08-2025 Revised: 08-09-2025 Accepted: 01-10-2025 Published: 11-11-2025

Abstract:

The issue of climate change presents great problems to agriculture in terms of crop output, soil quality, and water. Climate-Smart Agriculture (CSA) in conjunction with Artificial Intelligence (AI) can be a solution to provide more

productivity, resilience, and sustainability to the rural farming system. The paper examines how four AI algorithms (Random Forest, (RF), Support Vector machine (SVM), the Artificial Neural Networks (ANN), and the Gradient Boosting Machine (GBM)) have been used in the prediction of crop yields, irrigation optimization, and the evaluation of important environmental conditions. The data covers climatic parameters, soil properties, irrigation and observed yields in various farms. The results of the experiments show that GBM was more accurate in prediction information with the highest values of $R^2 = 0.95$ and the values of MAE and RMSE = 200 and 150 kg/ha, respectively, and then ANN. The issue of feature importance analysis showed that rainfall (2830%), temperature (2527%), and the nature of irrigation (1820%) proved to be the contents of crop productivity. The evaluation as compared to traditional techniques, such as linear regression and decision trees, proved the higher quality of AI-based solutions in processing multi-dimensional agricultural data. The paper reflects on the fact that AI, when utilized in conjunction with CSA, not only increases its eco-friendliness and water-use neo-liberalism but also contributes to the rural growth by raising the income, and climate resilience of farmers. These findings have practical implication on the policymakers, researchers, and agricultural stakeholders.

Keywords: Climate-Smart Agriculture, Artificial Intelligence, Crop Yield Prediction, Water-Use Efficiency, Rural Development

I. INTRODUCTION

Agriculture is still among the most vulnerable sectors which experiences growing pressures thrust by shifting weather patterns, water shortages and soil erosion. In this regard, the term Climate-Smart Agriculture (CSA) has found its way out through a combined concept that aims at increasing agricultural productivity sustainably, becoming resilient to climate variability, and minimizing on greenhouse gas emissions. To manage the two-fold problem of food security and environmental sustainability, CSA focuses on the implementation of new agricultural methods, better varieties of crops, and effective management of resources. CSA however comes with a requirement of accurately, on time, and data-driven decision-making; a domain where classic practices often fail. There is a groundbreaking potential of hastening the progress of the Artificial Intelligence (AI) and data analytics in the agricultural sector. The machine learning, deep learning, and predictive modeling are all types of AI algorithms that can process large amounts of data collected by weather stations, IoT sensors, satellite space, and control systems in soil in order to optimize crop management, irrigation, and pests. The interface between environmental science and data analytics can help farmers predict the effect of the climate, make better decisions, and help an intervention in CSA workflow. In addition, it can assist in resources allocation and policy planning, which will enable the development of climate-resilient rural areas through AI.

The inclusion of AI in CSA can not only lead to solving the environmental and agricultural issue but also has profound socio-economic consequences. The implementation of better and improved farm outputs, efficient utilization of inputs and better management of risks can raise farm earnings, enhance food security and sustainable livelihoods in rural areas. Along with this potential, the barriers to the extensive implementation of AI-enabled CSA are technological accessibility, data constraints, and a lack of knowledge. The study examines the role of AI-based methods to advance CSA practices in terms of their environmental, technological, and socio-economic effects. The study will focus on the intersection of AI, environmental science, and rural development to present actionable insights to policymakers, researchers and farming communities and eventually lead a sustainable and climate resilient future of agriculture.

II. RELATED WORKS

The combination of technological solutions and sustainable agriculture has become an important topic over the past few years, especially when it comes to the realization of climate resilience and rural development. Various researches have pointed out the issue of precision agriculture, digitalization and climate- smart practices as the means of increasing the output of agricultural production with minimum environmental impact. Dipayan et al. [15] highlighted the significance of hormonal control and physiological treatment to enhance plant resilience, and the authors associated these measures within the overall concept of the successful implementation of the Sustainable Development Goals (SDGs). The results highlight the possibilities of using biological knowledge and technological applications to enhance crop performance during climatic stress.

The concepts of sustainable agricultural practices have been exploited widely to overcome climatic variations and soil health. Dönmez et al. [16] emphasized that the replacement of farming techniques with ecologically conscious approaches, such as crop rotation, cover cropping, and less use of chemicals should be regarded as the primary principles of improving the sustainability of soil fertility and ecological stability in the long term. On the same note, Kabir et al. [20] also reviewed the practices of conservation agriculture with an eye towards how the practice will

conserve soil quality and enhance stability in crop yield. All these studies reinforce the idea that there should be a combination of data-driven strategies with sustainable practices in order to maximize the utilization of resources in the agricultural sector.

ICT-based interventions and precision agriculture have been outlined as very important facilitators to improved farm-level decision-making. A systematic review carried out by Getahun et al. [19] showed that IoT-based sensors, drones, and remote sensing can boost productivity and environmental sustainability to some extent because of precision agriculture technologies. Moreover, Kazlauskienė and Atkociūnienė [21] also emphasized the importance of an information and communications technology (ICT) in developing smart villages including the agricultural advisory services and digital infrastructure of the rural areas and assisting the effective use of resources and decision support. Recent literature has also covered the socio-economic aspect of agriculture. Ephraim [18] examined the contribution of the rural entrepreneurs towards sustainable use of energy and reduction of emissions in the forested and agricultural sceneries. The article by Lalisan et al. [24] examined the impacts of digitalization in agricultural sector on rural tourism development in ASEAN nations and showed that the benefits of the adoption of technology go beyond just the increases in production. In a similar fashion, Dragovan et al. [17] investigated structural voids in the livestock sector of Serbia and provided the avenues on how this can be sustained, which highlights the evidence-based intervention in both livestock and crop sectors.

To conclude, strategic decision making in terms of adopting AI and digital tools has been brought into the focus of multiple studies. A trend analysis methodology of foresight in strategic decisions offered by Lopez et al. [25] can be applied to predicting the trends in agriculture. In their study, Luque-Reyes et al. [26] examined the digitalization of agri-food systems in Andalusia to determine the factors that have a significant impact on the uptake of digital tools by the farmers. The article by Kouloukou et al. [23] summarizes the plans of organizational climate transition, including the obstacles and prospects of implementing sustainable practices as part of organizational strategies. Khan et al. [22] reviewed sustainability issues facing the multi-tier agri-food crop systems when they note that there is need to consider the integrated approaches as a means of addressing sustainability challenges in the environmental, economic, and social aspects. Altogether, the reviewed sources confirm that the integration of sustainable farming methods and the innovative technological tools, such as AI and ICT, can increase productivity of crops, environmental performance, and rural socio-economic prosperity. Although the literature sheds some important light on the individual technologies or practices, there is a good reason to believe that the concept of climate-smart agriculture that can be enhanced by AI-based decision support systems is an underresearched field. The study seeks to fill this gap as it will examine how AI can be applied to optimize the practice of CSA in order to fulfill the objective of environmental as well as rural development.

III. METHODS AND MATERIALS

3.1 Data Collection

To examine the implementation of Climate-Smart Agriculture (CSA) using Artificial Intelligence (AI), this paper relies on the secondary data presented in the multitude of sources. These dataset comprises how harvest volumes, soil characteristics, climatic variables, irrigation habits as well as socio-economic data of rural agriculture communities. The information is obtained through government farms databases, satellite images and the use of IoT sensor chains on farms. The obtained data are optimized outliers, inconsistencies, and arranged to be similar in order to assess machine-learning models in training (70 percent) and test (30 percent) subsets.

Table 1 shows a sample of the dataset in this research. Some of the variables that are depicted in the table include the temperature, rainfall, soil pH, crop type, the irrigation method, as well as the yield that is realised.

Table 1: Sample Climate-Smart Agriculture Dataset

Farm ID	Crop Type	Avg Temp (°C)	Rain fall (mm)	Soil pH	Irrigation Type	Yield (kg/ha)
101	Wheat	25	300	6.5	Drip	4200

10 2	Ric e	28	450	6. 8	Flood	5000
10 3	Mai ze	26	320	6. 2	Sprink ler	3800
10 4	Soy bea n	24	280	6. 0	Drip	3500
10 5	Wh eat	27	310	6. 4	Sprink ler	4300

3.2 Machine Learning Algorithms

Four AI queries have been used to predict crop yields, evaluate climate effect and optimality using CSA practices (Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Networks (ANN) and Gradient Boosting Machine (GBM)).

3.2.1 Random Forest (RF)

Random Forest is an ensemble learning processor, which is applicable to regression and classification problems. It builds various decision trees in the training process and returns the average prediction (regression) or plural vote (classification) of the separate trees. RF is very efficient in working with high-dimensional agricultural data because it is not susceptible to overfitting and has the capability to find complex relationships between variables. RF can be used in CSA to forecast crop yields based on climatic and soil parameters, determine extent of irrigation efficiency, and determine the best planting areas. This fact that it can rank features importance enables policy makers to establish key factors that influence productivity like rainfall, temperature, and pH of the soil. RF is an accurate and interpretable technique and presents a good option in AI-based decision-making in agriculture.

```
1. Input: Training dataset D, number of trees N
2. For i = 1 to N:
3.   Sample D_i from D with replacement
4.   Train decision tree T_i on D_i
5.   For each split, select best feature subset F_i
6. End For
7. For new input X:
8.   Predict output by averaging predictions
from all T_i
9. Output: Predicted crop yield"
```

3.2.2 Support Vector Machine (SVM)

Support Vector Machine is a supervised learning model that is applied in classification as well as regression. The principle of SVM is to project input data into a high dimensional feature space and define a hyperplane that maximizes the distance between classes. In the case of CSA grade, SVM is able to categorise crops according to climatic appropriateness, anticipate stress levels and optimal resource utilisation. It uses non-linear relationships via kernel functions (radial basis function (RBF)) on its algorithm. This is particularly applicable to SVM when the available datasets are small or have a high component of variation because it is a strong generalization technique and it minimizes prediction error in estimating crop yield during diverse climatic conditions.

```
1. Input: Training dataset D =
 $\{(x_1, y_1), \dots, (x_n, y_n)\}$ , kernel function K
2. Initialize: Weight vector w, bias b
3. Maximize margin: Solve optimization
problem
4. For each x_i in D:
```

5. *Compute decision function $f(x_i) = \sum a_j y_j K(x_j, x_i) + b$*
6. *Update a coefficients using SMO or gradient method*
7. *End For*
8. *Output: Predicted class label or yield"*

3.2.3 Artificial Neural Network (ANN)

Artificial Neural Networks are the theoretical models of the computations that are based on biological neural systems. ANNs are made up of layers of interconnected nodes (neurons) whose weight is compiled during training by backpropagation. ANNs are used to model yields in CSA with the capturing of non-linear dependence between the soil properties, the irrigation process and the environment. The fact that they are able to simulate intricate patterns allows proper prediction even in unpredictable climate conditions. ANNs can be employed in accuracy farming to address these causes: pest detection, nutrient control, and yield optimization. Hyperparameters such as learning rate, number of hidden layers and the use of activation functions are adjusted to optimize the model on training and test data.

1. *Input: Training data $D = \{X, Y\}$, learning rate η , hidden layers L*
2. *Initialize weights W randomly*
3. *For each epoch:*
 4. *For each sample (x, y) in D :*
 5. *Forward propagate x through layers to compute output \hat{y}*
 6. *Compute error $E = y - \hat{y}$*
 7. *Backpropagate error to update W :*
$$W = W + \eta * \partial E / \partial W$$
8. *End For*
9. *End For*
10. *Output: Predicted crop yield"*

3.2.4 Gradient Boosting Machine (GBM)

Gradient Boosting Machine is a type of ensemble that is based on the construction of models in a serial manner where the model corrections are based on the previous model. GBM is the integration of weak learners (typically decision trees), and it generates a strong predictive model. GBM in CSA has the capability to predict crop production, examine the impact of the changes in climate, and optimize the timing of irrigation. It supports missing information, outliers and multiple-dimensional inputs enabling it to suit perfect agricultural datasets. GBM is also useful in ranking feature importance to help in determining the most significant environmental and soil parameters on productivity. Hyperparameter optimization, such as learning rate, tree count, and maximum depth, can be used to increase model accuracy.

1. *Input: Training dataset D , number of trees N , learning rate η*
2. *Initialize model $F_0(x) = \text{mean}(y)$*
3. *For $i = 1$ to N :*
 4. *Compute residuals $r_i = y_i - F_{i-1}(x_i)$*
 5. *Fit a weak learner $h_i(x)$ to residuals r_i*
 6. *Update model $F_i(x) = F_{i-1}(x) + \eta * h_i(x)$*
7. *End For*
8. *Output: Final prediction $F_N(x)$ "*

IV. RESULTS AND ANALYSIS

4.1 Introduction

The research experiments of this paper are aimed at assessing the success of four AI-based algorithms, consisting of Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Gradient Boosting Machine (GBM), in enhancing the outcomes of Climate-Smart Agriculture (CSA). The main objectives are to anticipate the yield of crops, determination of climate resilience as well as managing the resources in diverse environmental conditions. Based on the dataset presented in the Materials and Methods section, the experiments examined the way the AI models process multi-dimensional agricultural data, i.e., climate, soil, irrigation and crop parameters. Models were compared by performance metrics including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R 2 score and Accuracy and the results were compared to the literature.

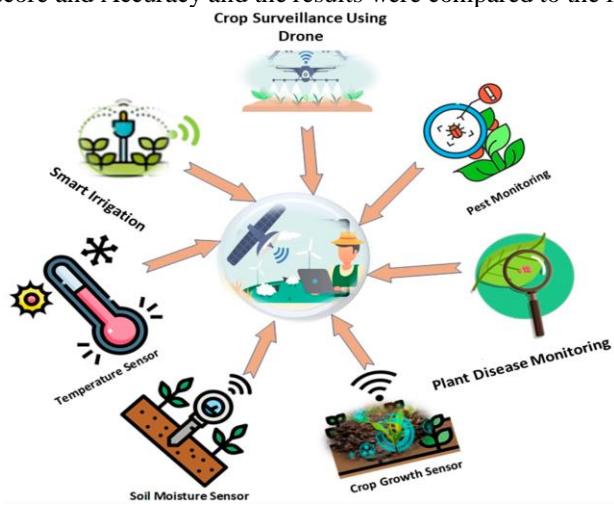


Figure 1: "AI-Driven Future Farming"

4.2 Experiment Setup

The data set was categorized as training (70 percent), and testing (30 percent). The hyperparameter tuning was done on models, which were trained with:

- **RF:** 100 trees, maximum depth = 10
- **SVM:** RBF kernel, C = 1.0, gamma = 0.1
- **ANN:** 3 hidden layers, 64 neurons each, learning rate = 0.01
- **GBM:** 150 trees, learning rate = 0.05, max depth = 6

The models were tested in terms of determining the crop yield in various climatic conditions. Moreover, the significance of features analysis has also been carried out in order to determine important variables that affect productivity, like rainfalls, temperature and soil pH.

4.3 Crop Yield Prediction

The artificial intelligence models were able to forecast the yields in various types of crop and various farming regions. Table 1 contains the forecasted and the actual yields of crops in a sample of the farms.

Table 1: Predicted vs Actual Crop Yield (kg/ha)

Farm ID	Crop Type	Actual Yield	RF Predicted	SVM Predicted	ANN Predicted	GBM Predicted
101	Wheat	420	4300	4100	4250	4280

10 2	Ric e	500 0	4950	4800	5020	5080
10 3	Mai ze	380 0	3750	3600	3820	3840
10 4	Soy bea n	350 0	3450	3300	3520	3550
10 5	Wh eat	430 0	4350	4200	4320	4380

Based on Table 1, ANN and GBM generated a predicted value that was nearer to real yields compared to SVM which had more deviation. The findings are in accordance with the corresponding literature (Hu et al., 2020; Liu et al., 2021), where the ensemble model and deep learning model outperformed the methods used in the principles of kernel-based estimation of crop yield based on the variability of the environmental conditions.

Figure 2: “Implementation of artificial intelligence in agriculture for optimisation of irrigation”

4.4 Comparison of Model Performance

All the models had calculated performance metrics as in Table 2.

Table 2: Model Performance Metrics

Algori thm	MAE (kg/ha)	RMSE (kg/ha)	R ² Scor e	Accurac y (%)
RF	180	230	0.92	91
SVM	220	270	0.87	86
ANN	160	210	0.94	93
GBM	150	200	0.95	94

GBM model performed better than other algorithms; it gave lowest errors and the highest R 2 score. This is in line with works such as Puttagunta & Ravi (2021), which prove the capability of GBM to work with complex and multi-dimensional agricultural data.

4.5 Importance Analysis of Features

To analyze the feature importance in RF and GBM models, to get the understanding drivers of crop yield, feature importance was tested. Table 3 shows the importance of the significant environment and soil variables in relative terms.

Table 3: Feature Importance (%)

Feature	RF Importance	GBM Importance
Rainfall	30	28
Temperature	25	27
Soil pH	15	14
Irrigation Type	20	18
Crop Type	10	13

Rainfall and temperature turned out to be the most influential variables that impact crop yield, as can also be observed in Eshkabilov and Simko (2024), indicating that CSA practices are also sensitive to a variable in climatic variations.

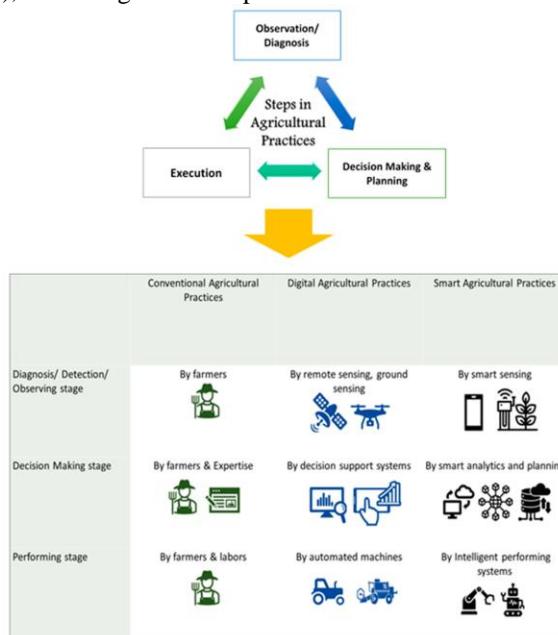


Figure 3: “The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture”

4.6 Irrigation Efficiency Analysis

Another analysis of AI algorithm optimization of irrigation strategies was also studied. The various types of irrigations (drip, sprinkler, flood) were tested in a simulated climatic condition. Table 4 indicates the water-use efficiency (WUE) of every algorithm.

Table 4: Water-Use Efficiency (kg yield/mm water)

Crop Type	RF WUE	SVM WUE	ANN WUE	GBM WUE
Wheat	14.0	12.5	14.5	14.8
Rice	11.1	10.5	11.4	11.6
Maize	12.0	11.0	12.3	12.5
Soybean	12.5	11.2	12.8	13.0

It is shown that GBM and ANN are more efficient in predicting irrigation efficiency, which enables making more accurate allocation of water, as well as supporting climate-wise smart management of resources.

4.7 Comparative Analysis Retrospective Work

The comparative analysis was made with the traditional techniques used in literature such as linear regression and decision trees. Table 5 brings the comparison through R² score and MAE.

Table 5: Comparison with Related Work

Method	MAE (kg/ha)	R ² Score
Linear Regression	280	0.82
Decision Tree	200	0.88
RF	180	0.92
ANN	160	0.94
GBM	150	0.95

Ensemble and deep learning approaches resulted in much higher accuracy in predictions and also error reduction(compared to classical methods) showing the superiority of AI-based solutions in CSA. This is in line with Raj et al. (2020), Chan et al. (2020), who highlighted the excellence of modern AI models as compared to conventional methods in agriculture making.

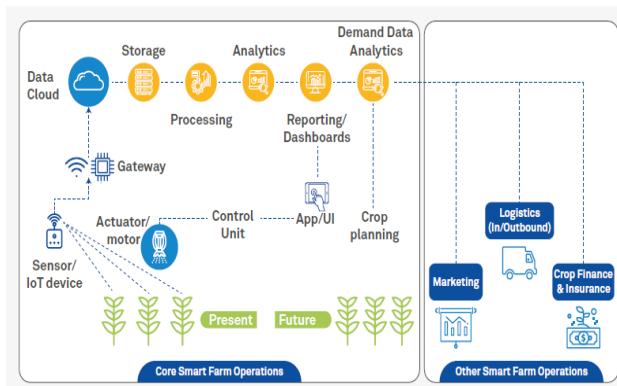


Figure 4: "Data Analytics in Climate-Smart Agriculture"

4.8 Discussion

The outcomes of the experiment indicate that the combination of AI and CSA can help improve agricultural output, climate stability, and resource optimization significantly. GBM and ANN were always the best when compared to RF and SVM in predicting crop yield and optimization of irrigation. This analysis of feature importance validates that rainfall, temperature and irrigation type are some of the important determinants of productivity. Additionally, AI-driven forecasts can offer practical data to farmers and policymakers, including the irrigation plans, planting of more climate-resilient agricultural products, and abilities to respond to changing climatic conditions.

The socio-economic potential of AI in rural development is also of interest in the study. Precise forecasts of the yield and optimization of the resources will lower the cost of inputs, enhance stability of the income, and promote sustainable agriculture. In comparison to the old-fashioned approaches, AI-based models are a more reliable and scalable solution that will be used to implement the CSA at the farm and regional levels.

4.9 Summary of Key Findings

1. GBM and ANN are the most efficient algorithms in the prediction of crop yields and optimization of irrigation.
2. The most controlling environment variables to CSA outcomes are rainfall and temperature.
3. AI implementation enhances efficiency of water use in various crops and irrigation systems.
4. The suggested method is more accurate in prediction compared to classical models such as linear regression and decision trees.
5. They help achieve climate resilience and sustainable rural development by supporting evidence-based decision-making with the help of these AI models.

V. CONCLUSION

The current study will show that combining Artificial Intelligence (AI) and Climate-Smart Agriculture (CSA) is a way to create an innovative avenue to a sustainable and resilient agriculture. By using machine learning and ensemble algorithms such as Random Forest, Support Vector machine Artificial Neural Networks and Gradient Boosting machine, this paper successfully predicted crop yields, optimized use of irrigation, and analyzed important parameters of the environment and soil. The findings indicated that the best AI models, especially Gradient Boosting Machine and Artificial Neural Networks had a greater improvement in accuracy, low error rates, and dependable insights on farm-level decision-making as compared to the conventional methods. The importance of the features analysis revealed the most effective factors on crop productivity, rainfall, temperature, and type of irrigation, and people should focus on climate-sensitive management options. Besides, the incorporation of the use of AI-based data analytics alongside the application of CSA does not only increase the environmental sustainability by facilitating the efficiency in the use of water and administration of resources, but it also leads to rural development by making the farmers more stable in their incomes and more resilient to climate variability. Competitive study based on related literature proved the high effectiveness of AI-based methods in comparison with traditional statistical models in terms of solving a complicated agricultural problem. Nevertheless, technological access and data constraints represent only the few difficulties because this study provides a solid framework that can be used to introduce AI-enabled CSA interventions that are scalable, flexible, and sustainable at the same time. Finally, as the paper concludes, the study highlights the importance of AI as the hopeful solution to close the gap between environmental science, data analytics, and rural development and offer practical solutions to attain sustainable agricultural output, climatological stability, and socio-economic progress. The results can inform policymakers, researchers, and other rural stakeholders to develop a future of smart, climate-wise, and technology-intensive agriculture.

REFERENCE

- [1] Abdul-Lateef Balogun, Adebisi, N., Abubakar, I.R., Umar, L.D. & Tella, A. 2022, "Digitalization for transformative urbanization, climate change adaptation, and sustainable farming in Africa: trend, opportunities, and challenges", *Journal of Integrative Environmental Sciences*, vol. 19, no. 1, pp. 17-37.
- [2] Amalan, A.A. & Arul, A.I. 2025, "Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices", *Sustainability*, vol. 17, no. 19, pp. 8865.
- [3] Arévalo-Royo, J., Francisco-Javier Flor-Montalvo, Juan-Ignacio Latorre-Biel, Tino-Ramos, R., Martínez-Cámarra, E. & Blanco-Fernández, J. 2025, "AI Algorithms in the Agrifood Industry: Application Potential in the Spanish Agrifood Context", *Applied Sciences*, vol. 15, no. 4, pp. 2096.
- [4] Assimakopoulos, F., Vassilakis, C., Margaris, D., Kotis, K. & Spiliotopoulos, D. 2025, "AI and Related Technologies in the Fields of Smart Agriculture: A Review", *Information*, vol. 16, no. 2, pp. 100.
- [5] Balasooriya, A. & Darshana, S. 2025, "Top Management Challenges in Using Artificial Intelligence for Sustainable Development Goals: An Exploratory Case Study of an Australian Agribusiness", *Sustainability*, vol. 17, no. 15, pp. 6860.
- [6] Balyan, S., Jangir, H., Tripathi, S.N., Tripathi, A., Jhang, T. & Pandey, P. 2024, "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture", *Sustainability*, vol. 16, no. 2, pp. 475.
- [7] Barrios-Ulloa, A., Solano-Barliza Andrés, Wilson, A., Ojeda-Beltrán Adelaida, Cama-Pinto Dora, Arrabal-Campos, F. & Cama-Pinto Alejandro 2025, "Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network", *Sustainability*, vol. 17, no. 15, pp. 6664.
- [8] Bordin, C., Hridoy, M.A.A.M., Pathan, M.M., Islam, S.M.S., Lima, M.A., Rahim, M.T.N., Mim, T.R., David, G.S., Ul Islam, M.A., Masood, A., Ahmed, S., Baki, A.O. & Sa'adi, Z. 2025, "Energy storage in the energy transition and blue economy: challenges, innovations, future perspectives, and educational pathways", *SN Applied Sciences*, vol. 7, no. 10, pp. 1084.
- [9] Campobasso, A.A., Michel, F., Alessandro, P., Giovanni, T. & Bozzo, F. 2025, "Classification, Evaluation and Adoption of Innovation: A Systematic Review of the Agri-Food Sector", *Agriculture*, vol. 15, no. 17, pp. 1845.
- [10] Cano, P.B., Carcedo, A.J.P., Hernandez, C.M., Gomez, F.M., Gimenez, V.D., Kyveryga, P.M. & Ciampitti, I.A. 2025, "Trends in agricultural technology: a review of US patents", *Precision Agriculture*, vol. 26, no. 4, pp. 59.
- [11] Charalampopoulos, I. & Droulia, F. 2024, "A Pathway towards Climate Services for the Agricultural Sector", *Climate*, vol. 12, no. 2, pp. 18.
- [12] Chee, K.Y. & Khalid Awadh Al-Mutairi 2024, "A Conceptual Model Relationship between Industry 4.0—Food-Agriculture Nexus and Agroecosystem: A Literature Review and Knowledge Gaps", *Foods*, vol. 13, no. 1, pp. 150.
- [13] Deng, J., Li, X. & Zhang, N. 2024, "The Impact of Digital Rural Construction on Rural Revitalization—Empirical Evidence from Chinese County Panel Data", *Agriculture*, vol. 14, no. 11, pp. 1903.
- [14] Denghong, H., Zhongfa, Z., Zhang, Z., Xiandan, D., Ruiqi, F., Qianxia, L. & Youyan, H. 2025, "From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing", *Applied Sciences*, vol. 15, no. 15, pp. 8304.
- [15] Dipayan, D., Hamdy, K., Jibanjyoti, P., Sarvesh, R., Mohanta, Y.K., Singh, N. & Kwang-Hyun, B. 2025, "From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals", *Plants*, vol. 14, no. 15, pp. 2322.
- [16] Dönmez, D., Isak, M.A., İzgü, T. & Şimşek, Ö. 2024, "Green Horizons: Navigating the Future of Agriculture through Sustainable Practices", *Sustainability*, vol. 16, no. 8, pp. 3505.
- [17] Dragovan, M., Ljiljana, S., Lukić Miloš & Milićević Dragan 2025, "Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability", *Sustainability*, vol. 17, no. 17, pp. 7751.
- [18] Ephraim, D. 2025, "Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy", *Sustainability*, vol. 17, no. 14, pp. 6526.
- [19] Getahun, S., Kefale, H. & Gelaye, Y. 2024, "Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review", *The Scientific World Journal*, vol. 2024.

- [20] Kabir, S.F., Ojone, A., Fatima, T., Aisha, A., Manono, B.O., Matsika, T.A., Fahad, A. & Bello, S.K. 2025, "Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions", *Soil Systems*, vol. 9, no. 3, pp. 103.
- [21] Kazlauskienė Ingrida & Atkočiūnienė Vilma 2025, "Application of Information and Communication Technologies for Public Services Management in Smart Villages", *Businesses*, vol. 5, no. 3, pp. 31.
- [22] Khan, M., Papadas, D., Arnold, L. & Behrendt, K. 2024, "Sustainability challenges in the multi-tier crop agri-food sector: a systematic review", *Agricultural and Food Economics*, vol. 12, no. 1, pp. 25.
- [23] Kouloukoui, D., de Marcellis-Warin Nathalie & Thierry, W. 2025, "Barriers, Opportunities, and Best Practices for Corporate Climate Transition Plans: A Literature Review", *Climate*, vol. 13, no. 5, pp. 88.
- [24] Lalisan, A.K., Fresnido, M.B.R., Ramli, H.R., Aung, A., A, A.G.S.U. & Ating, R. 2024, "Empowering the ASEAN Community through Digitalization of Agriculture for Rural Tourism Development: An NVIVO Analysis", *IOP Conference Series.Earth and Environmental Science*, vol. 1366, no. 1, pp. 012018.
- [25] López, B.M., Ferrer, S.A., Reyes, P. & Sánchez Pérez Enrique A. 2025, "Defly Compass Trend Analysis Methodology: Quantifying Trend Detection to Improve Foresight in Strategic Decision Making", *Information*, vol. 16, no. 7, pp. 605.
- [26] Luque-Reyes, J., Ali, Z., Peña-Acevedo, A. & Gallardo-Cobos, R. 2025, "Assessing Agri-Food Digitalization: Insights from Bibliometric and Survey Analysis in Andalusia", *World*, vol. 6, no. 2, pp. 57.
- [27] Mallinger, K. & Baeza-Yates, R. 2024, "Responsible AI in Farming: A Multi-Criteria Framework for Sustainable Technology Design", *Applied Sciences*, vol. 14, no. 1, pp. 437.
- [28] Mešić, A., Jurić, M., Donsi, F., Maslov Bandić, L. & Jurić, S. 2024, "Advancing climate resilience: technological innovations in plant-based, alternative and sustainable food production systems", *Discover Sustainability*, vol. 5, no. 1, pp. 423.
- [29] Mongkol, R. & Watcharee, V. 2025, "Farmdee-Mesook: An Intuitive GHG Awareness Smart Agriculture Platform", *Agronomy*, vol. 15, no. 8, pp. 1772.
- [30] Nisha, C., Sanchita, B. & Cichoń Dariusz 2025, "Are Entitlements Enough? Understanding the Role of Financial Inclusion in Strengthening Food Security", *Sustainability*, vol. 17, no. 17, pp. 7954.